High Density Crossbar Arrays with Sub- 15 nm Single Cells via Liftoff Process Only
نویسندگان
چکیده
Emerging nano-scale technologies are pushing the fabrication boundaries at their limits, for leveraging an even higher density of nano-devices towards reaching 4F(2)/cell footprint in 3D arrays. Here, we study the liftoff process limits to achieve extreme dense nanowires while ensuring preservation of thin film quality. The proposed method is optimized for attaining a multiple layer fabrication to reliably achieve 3D nano-device stacks of 32 × 32 nanowire arrays across 6-inch wafer, using electron beam lithography at 100 kV and polymethyl methacrylate (PMMA) resist at different thicknesses. The resist thickness and its geometric profile after development were identified to be the major limiting factors, and suggestions for addressing these issues are provided. Multiple layers were successfully achieved to fabricate arrays of 1 Ki cells that have sub- 15 nm nanowires distant by 28 nm across 6-inch wafer.
منابع مشابه
Mass fabrication of resistive random access crossbar arrays by step and flash imprint lithography.
Step and flash imprint lithography (SFIL) is a promising method recently used for next generation lithographic technology because it is a high-speed process that can be carried out at room temperature and low pressures. Improvements made to SFIL enable the replication of crossbar patterns with a high resolution and the development of suitable materials and techniques to achieve high resolution ...
متن کاملNew Memristor-Based Crossbar Array Architecture with 50-% Area Reduction and 48-% Power Saving for Matrix-Vector Multiplication of Analog Neuromorphic Computing
In this paper, we propose a new memristorbased crossbar array architecture, where a single memristor array and constant-term circuit are used to represent both plus-polarity and minus-polarity matrices. This is different from the previous crossbar array architecture which has two memristor arrays to represent plus-polarity and minus-polarity connection matrices, respectively. The proposed cross...
متن کاملArchitecting Low Power Crossbar-Based Memristive RAM
Crossbar-based memristive arrays are promising candidates for future high-density, low-power memories. Their structural simplicity allows them to be fabricated with pitches as small as 17 nm [6] and with projected reductions, according to the ITRS, to a few nanometers in the next decade [1]. A crossbar is particularly useful if two-terminal switching nano-devices with a nonlinear behavior are p...
متن کاملMulti-Bit Read and Write Methodologies for Diode-STTRAM Crossbar Array
Crossbar arrays using emerging non-volatile memory technologies such as Resistive RAM (ReRAM) offer high density, fast access speed and low-power. However the bandwidth of the crossbar is limited to single-bit read/write per access to avoid selection of undesirable bits. We propose a technique to perform multi-bit read and write in a diodeSTTRAM (Spin Transfer Torque RAM) crossbar array. Simula...
متن کاملHigh-density crossbar arrays based on a Si memristive system.
We demonstrate large-scale (1 kb) high-density crossbar arrays using a Si-based memristive system. A two-terminal hysteretic resistive switch (memristive device) is formed at each crosspoint of the array and can be addressed with high yield and ON/OFF ratio. The crossbar array can be implemented as either a resistive random-access-memory (RRAM) or a write-once type memory depending on the devic...
متن کامل